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Abstract. We have carried out microcanonical Monte Carlo (MC) simulations for ihe two- 
dimensional (zD) classical XY model on a square lattice having 900 spins with periodic 
boundary conditions. The temperature dependence of the energy. specific heat, mean- 
square magnetization and vortex density show good agreement with the existing ckonical 
Mcsimulation results. Wethus demonstrateergodicity in the microcanonical MC simulations 
for the 2D classical XY model. The maxh" of the temperature derivative of tlie vortex 
density is found to occur at the temperature corresponding to the maximum of the specific 
heat. 

1. Introduction 

Monte Carlo (MC) simulations using the Metropolis algorithm [l] have long been a 
general prescription for computer experiments in statistical mechanics[Z]. The algorithm 
operates in a canonical ensemble, where the temperature ( r )  is the input parameter 
and the thermodynamic quantities are obtained from the simulation. The method is 
stochasticin principle. On theotherhand,in thecaseofthe microcanonical Mcsimulation 
proposed by Creutz [3], the total energy IS the input parameter and the temperature is 
obtained from the simulation. This might have an advantage in some cases [4], because 
it is expected that the physical quantities depend in a smoother way on the internal 
energy than on the temperature. An extra degree of freedom called 'the demon' (after 
Maxwell'sdemon) travelsin the system, transferringenergy asit changes the microstate. 
The method is deterministic in principle and the system complexity is expected to give 
rise totheergodicity.Toavoidtrappinginmetastablestatessomeamount ofrandomness 
is introduced in the simulation [4]. However, rigorous proof of ergodicity in the deter- 
ministic microcanonical MC simulation is lacking [4]. The question of ergodicity has been 
approached pragmatically in the case of the discrete king model [4] by comparing the 
results of the microcanonical MC simulations with the exact results. There is, however, 
no literature to our knowledge on microcanonical MC simulations for spin systems with 
continuous symmetry (the two dimensional (ZD) classical XY model, for example [5 ] ) .  
The absence of long-range order [6], the presence of topological defects called vortices, 
and the Kosterlitz-Thouless transition [7,8], are some of the notable properties of 
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this model. Several canonical MC simulations (9-151 have been performed to study its 
equilibrium properties. There are also canonical MC simulations based on improved 
techniques, for instance on an over-relaxed algorithm [16] or on the collective MC 
updating [17]. However, the simulations in microcanonical ensemble have been per- 
formed using the molccular dynamics (MD) algorithm [18]. Here we present the results 
of microcanonical MC simulations for the 2D classical XY model and demonstrate er- 
godicity by comparing with the corresponding canonical MC and microcanonical MD 
simulations. However, we do  not plan to carry out a comparison of the computational 
efficiencies of the various techniques. 

The paper is organized as follows. In section 2, we describe the calculational pro- 
cedure for the microcanonical MC simulation. The temperature dependence of the 
energy, specific heat, mean-square magnetization and vortex density are presented in 
section 3. The conclusions are given in section 4. 

2. Calculational procedure 

The Hamiltonian of the 2~ XYmodel, with the spins constrained to lie in the plane, is 
given by 

H = - J Z  cos(ej - ei) (1) 
(i.J) 

where J > 0 is the coupling constant and 8, is the angle made by the spin at site i with 
respect to a fixed axis in the plane. The sum (i. 1’) is over the nearest neighbours. (This is 
also known as the 2~ planar-spin model.) For our simulation, we consider a 2D square 
lattice having 900 spins with periodic boundary conditions. For simplicity and faster 
computational speed, the continuous 8 is discretized. We used 300 discrete states; 8, = 
2nn/300,wheren = 1 ,2 ,3 , .  . ., 300. Inthiscontext,wenotefromtheexistingcanonical 
MC simulations that even 12 states are sufficient to represent the continuous model near 
the Kosterlitz-Thouless transition [lo]. 

We performed the microcanonical MC simulations as follows. When the demon 
with energy ED reaches site i, a random integer number is generated from a uniform 
distributionintherange[-150,150]correspondingtoachangeinB;in therange[-Jc, n]. 
Although the selection of the change in 8, is random, the decision whether the change 
is accepted or not isdeterministic, in contrast to the canonical Mcspin updatingprocedure 
[I]. The change is accepted if the system lowers (or does not change) the energy which 
is given to  the demon or if the system needs energy from the demon and the demon has 
sufficient energy to allow the change. Otherwise, the old state is retained and the demon 
moves to the next site. In this manner, the demon is allowed to visit all the sites of the 
lattice sequentially and this constitutes one Monte Carlo step per spin (Mas) of the 
simulation. This criterion for the choice of the change in 8, satisfies a restricted form of 
detailed balance [3] in order to approach a uniform distribution of microstates. 
Moreover, the introduction of randomness in the change of 8, also helps in achieving 
ergodicity. In equilibrium, the demon energy obeys the Boltzmann distribution function 
(figure 1). The demon works like a thermometer for the heat bath represented by the 
spin system. For the case where Eo takes continuous positive values, the temperature is 
directly related to the average demon energy (ED) [3]: 

where kB is the Boltzmann constant. (Hereafter we replace kBT/J by r a n d  E/J by Efor 
(ED) = k,T (2 )  
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Figure 1. The distribution of demon energies over 
5 X lo4 MCSS aher I X IO4 MCSS used for the q u i -  
Libration. The initial configuration was with all the 
spins parallel to each other. The ordinate represents 
the natural logarithm of the number of times out of 
45 x l0"steps that the demon i s i n  the corresponding 
energy bin of width 0.2. The straight line represents 
the Bolumann distribution for the corresponding 
temperalure of 0.919. 

FigureZ. N-'(,W) as a function of MCSS. The initial 
configurationwaswithallspinsparalleltoeachother. 
Each point on the curve represents the average over 
all the configurations starting from the first MCSS to a 
given MCSS. Thecorresponding temperature is 0.919. 

simplicity.) Although the spin states are discretized in our case, ED can take continuous 
value. Therefore, we estimate the temperature from the average demon energy (2). We 
used only the final ED after each MCSS to calculate the corresponding temperature for 
the Boltzmann distribution (represented by the straight line in figure 1). The equilibrium 
of the mean-square magnetization per spin (N-2(@)) with this algorithm is shown in 
figure 2. The mean-square magnetization per spin is defined as, 

whereNis the totalnumberofspins. Weusedthefinalflaftereach~cssfor theaverage 

The cooling cycle of the simulation proceeded as follows. Initially all the spins were 
aligned parallel to each other (i.e. 8, = Zn). The demon was given a fixed amount of 
energy which, when added to the initial system energy, corresponds to the energy at 
the highest desired temperature. Typically we used 3 X 10' MCSS (2.5 X IO4 MCSS) for 
equilibration and 7 X 10' MCSS (5  x lo4 MCSS) for averaging near (away from) the 
Kosterlitz-Thouless transition. The physical quantities calculated after each MCSS were 
used for the averaging. The accuracy of the mean value of the physical quantities was 
estimated by performing block averages consisting of 5 X lo3 MCSS each and then finding 
the standard deviation of the block averages. The total energy (ET), equal to the demon 
energy(E,)plus theenergyofthespinsystem (Es),remainsconstant foreachsimulation 
run. We obtained (Es) by subtracting (ED) from the total energy ET. The temperature 
of the spin system was obtained from the average ED using the demon energy after each 
MCSS. The final spin configuration and ED were retained after the simulation run. The 
next lower temperature was obtained by subtracting a finite amount of energy from the 

in (M). 
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Figure3. Averagesystemenergyperspin asa function 
of temperalure. The solid line is the least-squares 
cubic spline fit to the data points. 

T 
Figure 4. A (+) and A’-’(,!@) ( X )  as functions of 
temperature. The solid lines are the least-squares 
cubic spline fits to the data points, 

demon and proceeding through the simulation. This procedure is repeated until the 
lowest desired temperature is reached. The system was then heated stepwise through 
the same total energies as those of the cooling cycle. During the heating cycle, energy 
was added to the spin system through the demon. The results of the cooling run and the 
heating run did not differ by more than 1%. The physical quantities presented in the 
following section are the average of the cooling and the heating run at each ET. 

3. Results 

The temperature dependence of the average system energy per spin N-’(ES) is displayed 
infigure3.The standarddeviation oftheestimatedtemperature isless than about 0.5%. 
We also calculated the temperature dependence of N-’(W) and the vortex density (A). 
(M’) is related to the susceptibility 01) as follows: 

x = ( N T ) - l ( ( M * )  - (M)*). (4) 
The spontaneous magnetization of the ZD classical XYmodel should vanish at all finite 
temperatures [ lo .  111 and therefore ,y is estimated as being equal to The 
reasoning behind this approach [lo] is that {iW) is rather stable against the number of 
MCSS, whereas {M) is not necessarily small at intermediate steps, and it goes to zero 
gradually. Figure 4 displays the temperature dependence of N-’(M*). The standard 
deviation of the calculated N-’(hP) is less than 4%. 

The presence of vortices in the 2D classical XYmodel, which was postulated theor- 
etically [7,8], has been examined in several computer simulations [9-ll, 14,17, 181. 
The Kosterlitz-Thouless theory defines the vorticity q of a given region as follows [SI: 

Here the integral is taken round the boundary of that region and O(r) is the angle which 
a spin situated at r makes with the fixed a i s .  We used a discrete version of the above 
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definition of q to calculate the vorticity in each elementary square plaquette consisting 
of four spins at the comers. The total number of positive vortices was found to be equal 
to the total number of negative vortices, whichis aconsequence of the periodic boundary 
conditions [ll]. We define the vortex density A as the total number of positive (or 
negative) vortices divided by the number of spins. Figure 4 shows the temperature 
dependence of the vortex density. The standard deviation of the calculated vortex 
density is typically less than 0.5%. 

In table 1, we compare W 1 ( E S ) ,  W2(A&) and A obtained from the present micro- 
canonical MC simulations with that of the existing canonical MC [lo, 11,15,18] and 
microcanonical MD [IS] simulations. The values corresponding to the microcanonical 
MC simulations for the fixed temperatures are obtained from the least-squares cubic 
spline fits of the data (figures 3 and 4). It is seen from table 1 that the present micro- 
canonical MC simulation results agree with that of the existing canonical MC and 
microcanonical MD simulations. In this context, we note that canonical and micro- 
canonical ensembles give identical results only in the thermodynamic limit. However, 
the difference between these two ensembles for a 900 spin system is numerically small, 
as has been noted by Kogut and Polonyi (reference [18] in table 1). 

Next we examine the specific heat (C). Several canonical MC simulations [ll-131 
show that the maximum in the temperature dependence of the specific heat occurs at a 
temperature which is about 15% higher than the Kosterlitz-Thouless transition tem- 
perature. We have calculated the specific heat from the relation C = N-’(a(Es)/aT). 
The temperature dependence of the specific heat is shown in figure 5 along with the 
temperature dependence of aA/a T. The temperature derivatives were obtained from 
the least-squares cubic spline fits of the data. We obtain the specific heat peak at 1.09 
with a peak height of 1.56. This is comparable to the reported values of the peak position 
(peak height) of 1.02 (1.55) for 900spins [ll], 1.07 for 1024 spins (McMillan as quoted 
in Ill]), 1.06 (1.45) for 3600spins [12] and 1.07 (1.44) for 1600 spins [13]. We also found 
that the maximum in aA/aToccurs at 1.10 which is equal to the temperature at which 
the specific heat peak occurs, within the uncertainties of the data. This observation can 
be naively understood as follows. Formation of a vortex costs energy and therefore the 
temperature rate of change of the vortex density is directly related to the temperature 
rateof change of (Es). Hence, one expects that the maxima of C ( T )  and aA/aTshould 
occur at the same temperature. The Kosterlitz-Thouless transition, which is associated 
with the unbindingof the vortex-antivortex pair, however, occursat a lower temperature 
ofabout0.9 [ll-13,15,16]. 

4. Conclusions 

We have presented the microcanonical MC simulations for the ZD classical XY model 
based on the method proposed by Creutz [3]. We obtain good agreement of the tem- 
perature dependences ofW1(Es), W*(A&), Aand Cwith that obtained from the existing 
canonical Mcand microcanonical MD simulations. We have thus demonstratedergodicity 
in the microcanonical MC simulations for the 2D classical XY model in an equilibrium 
situation. We also find that the maximum of the temperature derivative of the vortex 
density occurs at the temperature corresponding to the maximum of the specific heat. 

Here, we have not compared the computational efficiencies of the various 
techniques. The critical slowing down is one of the main factors which affects the 
computational efficiency. In this respect, there are improved canonical MC simulation 
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T 

Figure 5.  C (solid line) and aA/JT (dashed line) as 
functions of temperature. Specific heat is given by 
N-'(a(Ed/aT) .  Both a(Es)/aT and JAlaT were 
obtained from the least-squares cubic spline fitted 
curves in figures 3 and 4. The maxima of C and aA! 
JToccurat temperatures 1.Wand 1.10. respectively. 

techniques [16,17] to reduce the effect of the critical slowing down. One important 
aspect of the present microcanonical MC simulation is that the number of computational 
operations does not increase by increasing the number of spin states, unlike the con- 
ventional canonical MC simulation [lo]. This feature allows one to increase the number 
of spin states at will, without practically slowing down the speed of simulation. It 
is straightforward to extend this algorithm to any other spin model with continuous 
symmetry. 
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